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ABSTRACT

This paper has two aims: to exhibit very general conditions under which

members of a broad class of unconstrained minimization algorithms are globally

convergent in a strong sense, and to propose several new algorithms that use

second derivative information and achieve such convergence. In the first part of

the paper we present a general trust region based algorithm. schema that

includes an undeflned step selection strategy. We give general conditions on this

step selection strategy under which limit points of the algorithm will satisfy first

and second order necessary conditions for unconstrained minimization. Our

algorithm schemna is sufficiently broad to include line search algorithms as well.

Next, we show that a wide range of step selection strategies satisfy the require-

ments of our convergence theory. This leads us to propose several new algo-

rithms that use second derivative information and achieve strong global conver-

gence, including an indefinite line search algorithm, several indefinite dogleg

algorithms, and a modified "optimal-step" algorithm. Finally, we propose an

implementation of one such indefinite dogleg algorithm.
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In this paper we discuss the convergence properties of a broad class of algo-

rithms for Lhe unconstrained minirmizaLion problem

minf (x): R'-*R (1.1)

where it is assumed that f is twice continuously differentiable. The algorithms

discussed are of the trust region type, but the algorithm schema used is

sufficiently general Lhat our convergence results apply to many algorithms of

the line search type as well.

In the first part of the paper we give a general condition under which the

limit points of a broad class of trust region algorithms satisfy the first order

necessary conditions for Problem 1.1. In this paper we shall call such an algo-

rithm "first order stationary point convergent". At the same time, we give a

general condition that shows how the limit points of these algorithms may

satisfy the second order necessary conditions for 1.1 by incorporating second

order information. We shall refer to such an algorithm as "second order station-

ary point convergent".

In the second part of the paper, we show that many algorithms satisfy these

conditions for first and second order stationary point convergence, and we sug-

gest several new algorithms that use second order information.

The convergence results presented here are a generalization of those given

by Sorensen [i980]. Sorensen proves strong convergence properties for a

specific trust region algorithm, which uses second order information. Others,

including Fletcher and Freeman i1977], Goldfarb [1960], Kaniel and Dax [1979],

cCorrick r1977], More and Sorensen [IC79], Mukai and Polak [1978], and Vial

and Zang j1975], havQ dLscussed and proven the second order stationary point

co ,,ergcnce of alguriLanms that use second order information but are not of the

L,-uLs region Lypo. Fo-'"ll £1975], on the other hand, discusses the first order
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stationary po~it convr-nice pi'operties of a class of tCSut region algorithms.

In Section 2 we define our general algorithm schema, state the conditions

for the types of convergence mentioned above, and prove the convergence

results. In Section 3 we take the first step toward showing the applicability of

the class of algorithms by commenting that practically all trust radius adjusting

st4rategies in use fit into our algorithm schema. In Sections 4 and 5 we further

show the meaning of the schema by discussing a variety of different types of

step selection strategies that satisfy the conditions given in Section 2. Finally in

Section 6 we propose an implementation of one of these, an "indefnite dogleg"

algorithm.

In the remainder of the paper we use the following notation:

is the Euclidean norm.

g kx)eR' is the gradient of f evaluated at x.

H(z)cR"' is the Hessian of f evaluated at x.

zk J is a sequence of points generated by an algorithm, and .ft =f (zk), k =g (zk),

and Hk =H(z).

X1(3) and X,(B) are the smallest and largest eigenvalues, respectively, of the

symmetric matrix B.

.uu, ] is the subspace of RI spanned by the vectors u 1 . .
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3. uobai ic. . crgnc.: -a Geae - T:ust Region Algc.rit_%_

In this section we describe a class of trust region algorithms in a way that

includes most trust region algorithms as well as many other algorithms, and

tht isolates the conChions they nay meet in order to have various convergence

properties.

The form of most existing trust region algorithms is basically as follows.

The algorithm generates a sequence of points xt . At the k-th iteration, it forms

a quadratic model of th2 objective function about Zx,

7Pk (W))=fk +gW + 'tTBk W

where weR and Bk&R " is some symmetric matrix, and finds an initial value

for the trust radius, Ak. Then a "minor iteration" is performed, possibly repeat-

edl. The minor iteration consists of using the current trust radits At and the

information contained in the quadratic model to compute a step

pt(At)=p(g Bk Ak)

and then comparing the actual reduction of the objective function

ared4 (At)=f/k-f (xt +pk (Ak))

to the reduction predicted by-the quadratic model

If the reduction is satisfactory, then the step can be taken, or a larger trust

region tried. Otherwise the trust region is reduced and the minor iteration is

repeated.

Three aspects of this algorithm are unspecified, namely how to form the

matrix Bk for the quadratic model, how the step computing function p(g ,B,A) is

performed on each minor iteration, and how the trust radius At is adjusted. In

ow- abstract defltruion of a trust region algorithm below, the minor iterations

and .he strategy for adjusting the trust region are replaced by a condition that

the step and trust radius must satisfy upon quitting the major iteration. This



allows the description to cover a wide variety of trust region strategies. The

methods of computing 2k and p (g ,B,A) are left unspecified, since we later want

to give conditions on these quantities that ensure the convergence properties.
For our abstract defu"ticn of a trust region algorithm it is enough to know that

they are computed in such a wvay that the algorithm is well-defined.

We now define the general trust region algorithm:

Algorithm 2.1

0) Given 7/, 71, 72 (0,i), zeR ' , and

AG>O, k = 1.

1) Compute fk =f (xf), g,=g (X), symmetric Bt R11 .

2) Find Ak and compute pk =pk (Ak) satisfying:

I pI j!9At and

a) aredk(Ak) L 7, and

b) either Ak Ak._, or

for some &-;-!--At,

ared4 (A) ared* ,(A)
re()<'72 or r ,()<.

3) xk.+i=xk+pkk=k +l.

4) Go to 1).

Again, note that the computations of Bt, pt (A). and At are left unspecified.

In Theorem 2.2 we give conditions on Bk and p(g,B,A) that yield various conver-

gence properties. In Section 3 we will discuss a number of trust radius adjusting

strategies that satisfy the requirements in Algorithm 2. 1, step 2).

Now we set forth conditions which the step computing fiUction p(g,B,A)

may satisfy and prove that if it does meet these conditions then the conver-



gence results follow, in Sections 4 and 5 we will discuss various step computing

gcri-ihns that fuill the conditions below.

The first condition says that the step must give suflicient decrease of the

quadratic model. The second condition requires that when H(x) is indefinite the

sKep give as good a decrease of the quadratic model as a direction of sufficient

negative curvature. The third condition simply says that if the Hessian is posi-

L-c definite and the Newton step lies wiahin the trust region, then the Newton

s' ) Is chosen.

Before stating the conditions we define some additional notation.

pre (g ,B,)=-g p(g,BA)- J p(g,B.A)TBp(g,BA).

L-r conditions that a step selection strategy may satisfy are:

The:'e are c 1, a1>O such that for all q eR", for all symmetric BeR"l', and for all

6>9, predZ(g ,B,A) t-f 1 11mg[Irin (Aa,-ll .1

lB f

Condition #2

i'ncre is a U2>0 such that for all gcRl, for all symmetric BeRnx" , and for all

,L,>O, pre (9 B~A),2_f2(-X\ (B))A2.

Condition 13

If B is positive definite and I!-B-g I 1;A, thenp(g,BA)=-B- 1 g.

Ve now state and prove the convergence theorem. The proofs are similar to

t.Lose of Sorensen [19801. Conditions #1,#2. and #3 constitute a major generali-

zation of his assumption that

p(, qA)=arMin gTW+WTBW: IIW
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Theorem 2.2

Let f: R -4R be twice continuously differentiable and bounded below, and let

H(x) satisfy I H(x) I[LP for all xrRh . Suppose that an algorithm satisfying the

conditions of Algorithm 2.1 is applied to f (z). starting from some xzR', gen-

erating, a sequence xkj, z&R", k=1,2.. Then:

1. If p(q,B,A) satisfies Condition #1 and JIB jI I<5 for all k, then gk converges

to 0 (first order stationary point convergence).

II. If p(g,B,A) satisfies Conditions #1 and #3, Bt=H(xk) for all k, H(x) is

Lipschitz continuous with constant L, and z. is a limit point of xjI with H(z.)

positive definite, then x;. converges q-quadratically to x..

11. If p(g,B,A) satisfies Conditions #1 and #2, Bt=H(xk) for all k. H(x) is urn-

formly continuous, and xt converges to x., then H(x.) is positive semi-definite

(second order stationary point convergence, with I.).

Proof:

Each of the proofs of I, I, and Ill use the following fact:

Lemma If there is a positive integer M and a function w (A) such that

1) limw(A)=O,

2) for all A>O, for all k M,

are t (A)
p (A) -!w (A), and

3) each At satisfies the trust radius requirement in step 2b) of Algorithm 2. 1,

then JAL j is bounded away from 0.

Proof of the lemma: By 1) and 2), there is a A>0 such that if O<A<A and k:>M,

then ured(A) tj 2. Thus, fork M+1, if ALk<At-l, then by 3) there must be somepre dk (A)
ared, (A) aredl: -( A)

L-- - k which either has 0redk(A) o red 1 <(A) But that means that
Y1predk (A) <~predk-I(A) <

A;A, so Ak-"yjA--/A. Hence, for k>M+l, Ak>mtin(Ak.-,-/A), so clearly Akj is

" .1 *--- r,: , , - . .. Z m, - .. .. ,



Uu .... a a'.ay frc~ L. :

E; ch of the three parts also uses the following:

By'. ayor's thcorcm, for any : ano any A>O,

rzrcdk (A)-predk (A)'

fk -f (zk Pi (A))-%fk -f --gPk (A)- pk(A)TBkp(A)) I

0

p f BR _ pH( +pj(A))f( (1-A)t-.
0

So,

are dk (A)
predk (A)

lI\A 1p 1! i 2 f Bk s -H(xk + tpt (A)) I (1 -t)dt

Ipre dk (A) I
Adl three parts proceed by using the relevant hypotheses and the above argu-

ment to bound predk (A) below by a term that is O(A2), and then using the lemma

ab~ove.

Proof of 1: Consider any m with ig9m II s0.

Foranyx, lg(z)-g,,, j iI z-x,,, soif 1;x-xmII< 2 , then

lig(=) . I , gi l - (z) -g., 1 lg. 11
2

CallIR= g , and BR[z : li"-X- m H RI.

Now, there are two possibilities. Either for all k..-nm, Z kBR, or eventually

jxj: I leaves the ball HR. It turns out that the sequence can not stay in Like ball.

lIg,, II
I! ZxBR for all k-m, then for all k m, Ig, 11 . which we shall call E.

2

7ius, by Condition 1
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prodk (A)t Iqgk inA, 9.;

:crnin(A.A&#2

for all kmz, where a=--aj is used to simplify the notation. So,

pre dt (A)

1

0

A2 #, +#2)

crnin(A.

tor all k L and Applying the lemnma with w(A)= + and M=m, wefor6 *l/m andre

see that jA is bounded away from 0. But, since

fit -flk.,z=redk (Ak)}t7predA (Ak)

and f is bounded below, Ak converges to 0, which is a contradiction Hence,

eventually frk must be outside BR for some k >m.

Let L + 1 be the first index after mn with z, not in BR. Then

f (z,+ )-f (z.,)= t, f (Xk, l)-f (Xk)

A:=M

k=y P2
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=tj 1 _ _in( , m) P2P

= 11gm 1 1 g.11Mn(-)-II

Now, since f is bounded below and if (zk)i is monotonically decreasing, if(zh)j

converges to some limit, say f. Then by the above, for any k

g 2__ .1) )-a (f(zk)-. ).

Thus since if (xk) -.f., I jgk 1 -0.

Proof of II: By assumption, x. is a limit point, say xz converges to x.. We

will show first that in fact, if H(z.) is positive definite, then xk converges to z..

By 1, g (x.)=O. Since H(z.) is positive definite and H is continuous, we can find

61>0 such that if HIx-z. I<61, then H(z) is positive definite, and if zx. then

g (X) 0. Call B,= ix: x,-X.1<6'.

Since g(z.)=0, we can find 62>0, with [[H(z)-1g(x)j<- for all

CB2=iX : IH X-Xo 11<6d. Also, take 2< 6-.

Find jo such that f (xkjo)<inf if (z) : xvB,-B 2 1, and xj, oB 2 . Consider any

xz, with -kjo, xjeB2 . We claim that xz.4.B 2 which implies that the entire

sequence beyond xk , is in B2 . If xl+, is not in B2 , then since f i+j<fo x4+1 is not

in B 1 , either, so

At= Hzt.i-XL II-- i ix1+ 1-z. II -HI XI--z. 11-- 6 1~- 1,65
4 41

>-5-- ; i (-T)-Ig (x,) .

Ect, since the Newton step from xj is within the trust region, by Condition #3,

pj'(A)=-H(xL)-g (xt). But then since i'I(AI) <61, XL+,lih., which is a contrad-
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c,. on.

Thus for all k--k 0, xkEB 2, and so since f (xt) is a strictly decreasing

sequence and x. is the unique minimizer of f in B 2 , we have that Zk converges

to X..

Now, to show that the convergence rate is quadratic, we show that jk is

bcunded away from 0, which gives the result, since IIH(x)-g (zk) I converges

to 0, so eventually, by Condition #3, the Newton step will always be taken. Then

by a usual theorem the Lipschitz continuity of H implies the quadratic conver-

gence rate.

To show that jAk j is bounded away from 0, we will again use the lemma. In

order to do so, we need the appropriate lower bound onpredk (A).

j Condition #1,

I mt I1,ed, (A) =aI1g,,Ilrnin(IHpk(A)fl II I5k II)

and for all k large enough, Bk=H(zk) is positive definite, so either the Newton

step is longer than the trust radius, or pk(A) is the Newton step. In either case,

pk~~~I A (A- II-j Thus,.7 (t)< I!-B;-'gk II< I!Bk - II I(O ,I.so I((,, II IImBA) Ihus

preA (A)-a Ilpk(A) Ilmin( Ilpk(A) 11. (B.- H IB II

=olrp( ')min' 10k1 1 t
1

I C imnl C YH Hin , and note that by continuity there

is an MI such that for k M. BA; is positive definite and

r i (i, I B,-' I I IB, I

Finally, note that by the argument given earlier and Lipschitz continuity.
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ar-sdk()-predj(A) H p(A)i

thus for any A>O and kcM,

eledk(A) _2,)

jpredk(A) 'ac. jt(6):

L IIpk(A)' 1 LA
- 2ac. 2acc

,_LA

so by applying the lemma with wA - . we have that A is bounded away
2ac*'

from 0 and we are done.

Proof of II: Suppose to the contrary that A(H(x.))<0. By the uniform con-

tinuity of H, for any A>0, and any k,

pre dk (A) predk (A)

where

Fu ( H(zk+4p(A)-H(Zk) It(1-)t,
0

and thus limw(A)=0.

Find M such that if k;_M, NI(Bk)< Hz <0. By Condition #2,f

k;!M, and for all A>O,

so since I ipk( 6) 1 <3, the lemma applies with

W (A)= V(A)

Thus. jA is bounded away from 0.

But,

axre dA (Ak ) ti Lpre dk (Ak)-U )-( -~(H (x.))/ 2)L,2.

and since f is bounded below are d:(Ak) converges to 0, so A4 converges to 0,

wtuch is a contradiction. Hence, X(H(z.));tO. This concludes the proof of
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'i norem. 2.2.

The results of this theorem also apply to different shapes of trust region.

Specifically we may vw.sh to use a trust region deftned by IIDtp IlA for some

non-singular square matrix Dt such that 1Dt H and flDC- 'H are uniformly

bounded in k. This satisfies the conditions of Algorithm 2.1 and Theorem 2.2

si::ce if w_ make a change of varlables replacing A by A times the upper bound

ci D ,-' then pIkp I A. and the conditions otherwise do not involve Ilp 1f.

.e conditions are also not restricted to Euclidean norm and Theorem 2.2

applies as well to rectangular trust regions.



3. Some Permissible Trust Region Updating Strategies

The conditions on the trust region radius AM that we gave in step 2 of Algo-

rithm 2.1 were chosen to be near minimal conditions that allow us to prove the

results of Theorem 2.2. Obviously in implementing an algorithm 1nvoivg Lrl-..l

regions, there are many detailed considerations in choosing and adjusting thc

trust region radius that we have not considered so far in this paper. C.r pur-

pose in Algorithm 2.1 was to set forth conditions that apply to almost ari% rca-

sonable strategy. Here we indicate more specifically what types of strategies

are covered.

Most approaches for choosing and adjusting the radius At follow the foiio.r-

ing general pattern. Iteration k of the algorithm begins with an initial trust

radius which defines a step p. If this step is unsatisfactory a sequence of smaller

radii are tried until a satisfactory one i.s found. If the step p is satisfactory it

may be used or a larger trial trust region radius tried. At the next iterate

z k  +pk and a new initial trust radius is generated.

To choose the initial trial radius at the k-th iteration, Algorithm 2 1 only

requires that two conditions be met. First, the initial trial r lius can be smaller

than the final radius used for the previous step only if the previous step failed

the sufficient decrease condition, i.e.

are dt - I (,&, - 1

pre d _ <72.

Second, in this case the ratio between the previous At_1 and the new trial radius

must be bounded by some constant that is fixed for the entire algorithm. These

possibilities are covered by the condition b) in step 2) of Algorithm 2.1. Algo-

rithm 2.1 allows the possibility of making the initial trial radius larger than Ag-1

by any method chosen, if that seems advantageous. Clearly sonic methods for

doing this could be very inefficienL, but from the point of view of globail conver-

gence any increase is allowable.
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Oao method io;' Lhc~o.z}ng the initial trial trust region at the k-th iteration

'...~xi Ai~~ovthm 2.1 does ,iL cover is basing the radius on the length of the pre-

V3-is step pt_, even .n p-, falls in the interior of the trust region b_,. We

Lttle justifcation for this strategy, and including it in our theory, if possible,

,-zld make t1-hc analyss zore cumbersome.

Given the initial Lil radius at the k-th iteration, a sequence of trial radii

mxay be tried until a a'.sfzactory one is found. Algorithm 2.1 only requires that

thi. tcial radcius be reucced when the previous trial step tails to satisfy the condi-

ton a) in step 2) of ,lgorithm 2.1 and only in this case, and that the reduction

b? boundod belowI by a constant that is fixed for the entire algorithm. This case

is covered by the condition

71
and

pre 4 (A) "12

in Algorithm 2.1. Of course, the trust region ultimately used must satisfy this

condition.

The conditions of Algorithm 2.1 also allow successively larger trial trust

regions to be tried within the k-th iteration whenever this seems advantageous.

There is no restriction on the method used to increase the trial radius, nor on

the amount of the increase, as long as the final one used satisfies condition a) of

stcp 2) in Algorithm 2.1. Notice that it is not necessary to increase the trust

region at any point. Never increasing the trust region may cause great

inefficiency, but convergence is still assured.
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4. Some Permissible SLep Selection Strategies

In this section we present three lemmas describing useful conditions under

which the step pft(A) in Algorithm 2.1 will satisfy conditions #1 and #2. Using

these lemmas we will see that a number of different methods for computing

steps yield first and second order stationary point convergent trust region type

algorithms.

First let us mention two types of step selection strategies that have been

used in trust region algorithms to which we will refer.

The "optimal" trust region step selection strategy is to take

Pk (Ak)-=-rgM'n ,Y~f k w+ +X .W TBk W W Itt !5'AL (4.1)

This strategy has been discussed and used by many authors, see e.g. Hebden

[1973], More 11978], Sorensen [!980], and Gay [1981]. Bk is positive definite and

-B 1g9 I _At, then pt= -BIgk is the solution to (4.1). Otherwise, pl satisfies

(B+(XkI)p=-gk , for some non-negative at such that (Bk+akl) is at least posi-

tive semi-definite and I pI I I=A. If Bk is positive definite, then so is (Bt+ckI)

and

Pk=-(Bk+akl)1 gh , (4.2)
where oat is uniquely determined by I pJ I =Ak. If Bk has a negative eigenvalue,

then ph is still of the form (4.2) unless g is orthogonal to the null space of

(B, -X1!) and iI (B -XI)+gk I <A*; here the superscript + denotes the general-

ized inverse and X, denotes the most negative eigenvalue of Bk. In this case,

which More and Sorensen [1981] refer to as the "hard case",

pkt=-(Bk-XI)+g# +Ckv, where vk is any eigenvector of Bk corresponding to the

eigenvalue X1. and tk is chosen so that IIPI I =A*. The lemmas of this section

will lead to algorithms that are similar to this "optimal" algorithm and have the

same convergence properties but are considerably easier to implement.
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T he second Lype of LcusL region step selection strategy includes the dogleg

Ly", ahyor,,hs of Puwil '1970] and Dennis and Mei [1979]. These algorithms

Exe defined in the case when Bk is positive definite and always choose

pk -J-k 1]. When Ak I-B-xgt I!, Pk is the Newton step -BIgk; when

A< I! < '-BA-'gk , Pk is the steepest descent step of length Ak; when
gk'

E( g; , lI-B'g, I ). pk is the step of length Ak on a specified piecewise

Iluear curve connecting 1'B gt and _N-1gk (see Dennis and Schnabel

[1953] for further explanation). The lemmas of this section will lead to natural

and eflicient extensions of these algorithms to the indefinite case which satisfy

the conditions of Theorem 2.2 for second order stationary point convergence.

The first lemma gives a very general condition on the step at each iteration

that ensures satisfaction of Condition #1, and hence first order stationary point

convergence. By way of motivation we note that if an algorithm simply took the

"best gradient step", i.e. the solution to

mini gkw+ X wr}Ew : IIW I IA,wC[-g9],
then it would satisfy Condition #1. Lemma 4,3 is a slight generalization of this

fact.

Here we slightly change our earlier. notation and let

pred (s)= -g Ts- s TBS.

Lemma 4.3

Suppose there is a constant c 1c(O, 1] such that at each iteration k,

pred~pk(A) - miitw fJwlt w j j tA~wrd, ]J.
for some d4 satisfying

djg!5-cjfdjI I9I I gt
Thaa pk (A) satisfies Condition #1, and hence a trust region algorithm using it is

S|
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firt order stationary point convergent,

Proof: We will drop the subscripts I throughout and will show that

pred (s.) t -'-I g mlin(A, c I , where s. solves the above minimization

problem. This will clearly imply satisfaction of Condition #1 by p(A), since

pred(p(A)) !red (s.). by assumption.

Define h(a)=-pred(ad)=ag d+---dBd. Then h'(a)=adTBd+g~d, and
2

h"(a)= dTd.

Let s.=ad, i.e. a. is the multiple of d which minimzes the quadratic

g T W-w+T Bw along that direction, subject to the constraint 1Iw flEA. Now. if

-9 Td d A
dTBd>0, then either a.= if -T A,Bd or else a.= . In the first case

we have pr dI

pred (s.)

d Bd , dTBd,

(g Td)2

d rBd

I Ig 112I~ li 1
dTBd

HBIV
In the second case, we have

pred(s.)

prod the iA b9 Td A2 TB
djfl

J 11WF
(with the inequality above true since A < gd
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2

Finally. if dJd ., ard so we have
Ild 11

pred Is.)

A Td~ Ti(-A dTBdj

Fin ll, f d d OaI I d J----d 11

A Tg

c1

Thus, s. and hence p(A) satisfy Condition #i with constants ,=62-and

We may summarize the lemma by saying that as long as an algorithm takes

steps which do as well on the quadratic model as directions with "sufficient" des-
cent, then Condition #'_ is satisfied, and hence the algorithm is first order sta-

tionary point convergent.

Using Lemma 4.3, we can immediately note first order stationary point con-

vergence for a number of algorithms. The lemma can be used to prove the first

order stationary point convergence of most line search algorithms which keep

the angle between the steps and the gradient bounded away from 90 degrees,

because the step length adjusting strategy and step acceptance strategy in the

line search can be shown to correspond to a trust radius adjusting strategy and

step acceptance strategy allowed by Algorithm 2. 1. In addition, it applies to any

dogleg type algorithm, e.g. Powell [1970] and Dennis-Mei [1979], since these

algorithms always do at least as well as the "best gradient step". Finally, we

note that the lemma applies immediately to the "optimal" algorithm_ described

above, for the same reason.

The next lemma says, roughly, that if each step taken by the algorithm

gives as much descent as a direction of sufficient negative curvature, when

LnerC is one, then CondaLion #2 is saLisfied.
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Lemma 4.4

Suppose there is a constant c2.(O,i] such that at each iteration k where

X, (H (t))<0, we have Bk =H(zk) and

pre d(pi- (t6)) pre d(tk),

where

tk = 2-gmin gkw + YzwBkw: 11w Il-A,we~qt] ,

for some qk satisfying

Then p?(A) satisfies Condition #2.

Proof: We have just to show that for some U2>0, pred(t)-_-2 (-X(H(x))A2, for all

iterations with AI(H(zk))<O. Again, we ill drop the subscripts k.

Defie w =-sgng ?q) A q. Then
I T 62

FrdW=_, q - 7,qBq

2g ' 2 g I ((

Since qTBg<-c2 X1(H(:)) ,q 12. So, since ped(w)- pr (t)<- d(pk(A)), pk(A)

satisfies Condition #2 with U2
= 2

So, if the steps taken by an algorithm satisfy the hypotheses of both Lem-

mas 4.3 and 4.4, then the algorithm is second order stationary point convergent.

For example, if an algorithm uses any steps giving as much descent as

s argmirgtw+ XwT'kw; : Iw IJ!5A,wc44,:qk 1,

where 4 satisfies the requirement in Lemma 4.3, and gq satisfies the require-

ment in Lemma 4.4 when \,(H(zt))<O and is 0 otherwise, then it satisfies both

Conditions #1 and #2. One such algorithm is mentioned in Section 5.

Finally, we note that Lemma 4.4 applies to the "optimal' al&orithn (Soren-

sen [1960]), since this a!gorithm always achieves at least .s i.:uch duseent as is

A.
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pnssID.e in the eigenvoctor direction corresponding to the most negative eigen-

c,.e of H Z;'). Fake Logether with Theorem 2.2, the two lemmas prove that

t.e "optimal" algorithm is second order stationary point convergent.

Lemmas 4.3 and 4.4 can also be used to show convergence of algorithms

is.sng scaled trust regions of the form j t : lDt I!Ak , where Dk is a positive

dagcnal scaling matrix that may change at every iteration. If we are using such

a scaled region to determine a step otherwise satisfying the conditions of

L.--na 4.3. then we are requiringi

sk =argmn iSTA + flSTBks Dks IflAs s[d ]J.

T- satisies the conditions of Lemma 4.3 as stated but with A replaced by

11 D 11*hen by the Lemma, Condition #1 is satisfied with U, replaced by

1  and similarly for a . The same argument with Lemma 4.4 shows that

Condition //2 remains satisfied with a modified trust region. Thus if we require

that J!Dt II and DI D 1-: be bounded for all k, then the convergence results

from Lemmas 4.3 and 4.4 also apply when using such a scaled trust region. They

also apply to steps using trust regions based on other norms, such as 11 or L..

The final lemma contains a different set of sufficient conditions for a step

computing method to satisfy both Conditions #1 and #2. These conditions are

related to the step (4.2) of the "optimal" algorithm; however Lemma 4.5 is

broad enough to prove the second order stationary point convergence of a

variety of algorithms, including several discussed in Sections 5 and 6.

Lemma 4.5

:,pose HA, =i(z) and p, (A) satisfiws Condition #1 whencvcr NI(H(zk)) 0. Sup-

pose Lurther that there exist constants c3>l and c4t(O, ] such that whenever

X;'.,. )> for some ,E - max(, *Xj (A) satis ies:

<, -A , -( +a1)- i , then p(A) is any step satisfying Conditions #1 and
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#2;

ii) if A= 1-B~~>g ,thenPk(A)=-(BAM+ak)'k

iii) if A> -B + k I)-19k then A, (!)=-(Bk +aA; 1)-19 +t'k for some qt satis-

fying qB ~qa~c4 X1 (JYk) q j2 , where teR is chosen so that Iph(A) I=A and

Then pk (A) also satisfies Conditions #1 and #2 whenever NI(H(z))<O, and thus an

algorithm using pk (A) is second order stationary point convergent.

Proof: We will drop the subscripts k, and call Xl=,\(H(xk)). We will first show

that the step in iii) satisfies Conditions #1 and #2, and then see from the same

calculation that the step in ii) satisfies these conditions.

If p(t)=-(B+al)-g +tq, then by simple algebraic manipulation we have

that

pre d (p 'A))=

=_gr( q_( + I) - (q -(B+ al)-'g)1B (tq-(B +aI)-1g)

=g(B+al)-ig- g 9 - -q Bq +(qTB(B+aI)-1 g } gT(B+al)-B(B+aI)-9

9r (B+aI)-Ig _2 C 4 'Ii 2 jj T-aqr(B+a)-1g +a '-(B+al)-Ig 112
22

a 4\+ar-g e 4 1  j () 1  2

2

X 7( +cJ)-1g + -- ( -_X1) Ilip (A) 112

since the last two terms in the next to last expression above are positive due to

a>-X,>-cX, and q T(B+al)-l9 <0.

So. we see that
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p r er d A) 9 T(B+al)-,. + C4 (-X\) A2
2

and since the first quantity is positive, Condition #2 is clearly satisfied. Also,

pr ,))-- ( d flHBcaIf B}! l 1

2(c3+i) IB '

with the last inequality due to

So, Condition #2 is also satisfied.

Finally, note that in case ii), we can take t=0, and the same calculations

yield satisfaction of Conditions #1 and #2 by the step in ii).

The value of Lemma 4.5 is that it suggests many agorithms that are second

order stationary point convergent but are relatively efficient to implement. The

reader may have recognized that conditions ii and iii) of Lemma 4,5 just give an

easy-to-impiement way to identify the "hard case" in a second order algorithm,

and to choose a step in this case. The inequality concerning qA in iii) says that

q mnust be a direction of sufficient negative curvature. The inequality concern-

in.- at says that we can overestimate the magnitude of \ 1(H(xft)) by an amount

P1 c-ortiona to 1 H(zxk) I and still achieve global convergence. When we are not

in this "hcrd case" Lemma 4.5 says that we have great leeway in choosing the

step p . The algorithms of Section 5 are mainly based on Lemma 4.5.
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5. New Algorithms That Use Negative Curvature

In this section we present several idealized step selection strategies for

I'roblem 1.1 which use second order information. The step selection strategies

are all based on the lemmas of Section 4 and so any algorithm that uses one of

them within the framework of Algorithm 2.1 achieves second order stationary

point convergence. They are idealized only in the sense that they may use the

largest and smallest eigenvalues of the Hessian matrix and a direction of

sufficient negative curvature qk without specifying how these quantities are to

be computed. In Section 6 we will suggest a possible implementation of one of

these algorithms, including the computation of the extreme eigenvalues and

negative curvature direction when required.

Before describing the step selection strategies we turn briefly to the ques-

tion of judging these strategies. So tar we have been concerned with conver-

gence properties. We now consider two other factors, the computational work

involved in calculating the step and the continuity of the step selection strategy.

Dve define a continuous step selection strategy to be one where the function

p(g.B,A) is a continuous function of gB, and .We note that the "optimal" stra-

tegy in Sorensen [1950] has this property except in the highly unusual case that

the algorithm is at a point x with AI(H(z))=O, g orthogonal to the null space of

H(z), and I H(z)+g <A. All of the strategies to follow will have the same pro-

perty, except as otherwise noted. As for the computational work, the algorithm

we present in Section 6 should be quite efficient in terms of arithmetic opera-

tions required per step.

The first step selection strategy shows how a line search using second order

information can be extended to the indefinite case in a natural way that satisfies

the conditions of Lemma 1.5 and so assures second order stationary poiL- con-

vergence. The strategy is related to an algorith-n by Gill and Murray [:9721.
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In -1 of Lhe following, let 3,=H(xt).

Algorithm 5.1 Indefinite line Search Step

Let ic>> , 1. 1 .
fmc hir~ee

a) When X, (Bt)LO and Ie2(BA)!ic

(tc2 is the 12 condition number),

if I-BATgkI I-<A,

then pt (A)= - -1gk,

otherwisepk(A)- Pk -9k_______

b) 1 hen Xl(Bk)<O or K2(BA)>gc, at is

chosen such that Bt +atI is positive definite and

H2Bk +n.I)=,c, andpk (A) is chosen by

bi) if (B~ )g I jAo

then pt (4)- Bk +B +at 1) g gk

bii) otherwise,

Pk (A)=(B +0 )-*m9 +tq ,

where I and qg are selected as in

Lemma 4.5.

The second order stationary point convergence of any algorithm of the form of

Algorithm 2.1' that choses its steps by Algorithm 5.1 can trivially be proven by

!ring Lemma 4.5 combined with Lemma 4.3. Note that the constant x that is

used in Algorithm 5.1 could easily be replaced by some appropriate interval.

Also, in order for the step selection strategy to be continuous as discussed

above, qk must be a continuous function of gk and Bt.

The next two step selection strategies are extensions of the dogleg strategy

to the indefinite case. Aigorithm 5.2 shows how to construct a dogleg version of

_~ii
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the "optimal" algorithm. It is not implementable, due to its use of the general-

ized inverse and the most negative eigenvalue and corresponding eigenvector of

Bt. We include it in order to motivate Algorithm 5.3, which is similar but is

really implementable, as we shall see in Section 6. Both steps are easily seen to

satisfy the conditions of Lemma 4.5, with Lemma 4.3 again applying to the por-

tion of the algorithm not specified in Lemma 4.5.

Algrorithm 5.2 Indefinite Dogleg Step A

a) When XI(Bk)>O,

p I(A)=argmInjg#t w+)jwur Bw : Jjw jj!9A,wr[-gk,-Bj-gjt]j.

b) When Xj(B)<O,

bi) if gt is not orthogonal to the null space of Bt -AII,

or lH(BJt-XI)t g9 li :A,

thenpt(A)=crgminL gTw+ Iwgkw : 11W 1=A. -WC-kV1, j

where Btv =X lvt;

bii) otherwise pk (A)=-(Bk -XjI)+g +(vk,

where C is selected so that I Ijp (A) II =A.

Of course, the step in a) could be replaced by a usual dogleg or double dogleg

step, losing only the continuity of pk(A) at NI(Bk)=0. Also note that minimizing

the quadratic model over a two-dimensional subspace involves performing the

"optimal" algorithm when n=2, or, equivalently, solving one fourth degree poly-

nomial in one unknown, meaning that its computational cost is negligible.

The following is the Indefinite Dogleg Step that we propose in practice.

Again, the step a) for the positive definite case could be replaced by a normal

dogleg or double dogleg step.

Algorithm 5.3 Indefinite Dogleg Step B

a) When ?j(Bk)>O, do the same as in Dogleg A.
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1.) ,,hen ) i.L k bz chosen as in Lemma 4.5,

rk=-'Bk +at I)-g, ,nd pt (A) chosen by

bi) if r " then

bii) otherwise
) ~ -~k~+ , where C and qt are selected as in Lemma 4.5.

The advantage of Algorithm 5.3 is that it is fairly easy and efficient to imple-

nent, as we will show in Section 6, while also being a continuous step selection

strategy that is second order stationary point convergent , and that it approxi-

mates the "optimal" step selection strategy to some extent.

Alg=orithm 5.4 shows how a simpler indefinite dogleg step can be Con-

-~ .'~ Led that satisfies the conditions of Lemmas 4.3 and 4.4 and so also acieves

s ond order stationary point convergence.

kgcr'Ih. 5.4- Simple Indefinite Dogleg Step

a) 0,hen NI(B)>O, do the same as Doglegs A and B.

b) ,fthen X,(Bk)0, let qt satisfy

qkBjqk-c 4 X 1(BR) 1Iqk h'-

wherea c4 is a uniform constant for all k, as in

Lemma 4.5, and glgt!0, and let

Rk 'A=rm- lkw w:Ijw I I=A. w.-[-gk,qtI~

-cr4thn 5.4 is not continuous as discussed above when Xl(Bk)=O but if qk is

r-.nab.y chosen this wIl not be a problem, and the algorithm has the redeem-

ing feature that it may be implemented so as to require no matrix factoiizations

for most tnriflnite iterations. However, Algorithm 5.4 might require more itera-

tions than Algorithm 5.3 to solve the minimization problems. In Section 6 we

pr;-opo se an implementation of an algorithm that subsumes Algorithms 5.3 and
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Finally, we mention a slight generalization of the "optimal" step (Sorensen

[1980)) that still leads to a second order stationary point convergent algorithm.

Algorithm 5.5 Variation of "Optimal" Step

a) When Xl(Bt)>0, let pi (A) be the "optimal" step.

b) When Xu(BJ)<0, let j,= and qA; be chosen as in Lemma 4.5,

let rk=-(BA +ak I)-g, and

bi) if llrt I I A, thenp (A)=argmin g 'w+ % wB w IW I=AJ;

bii) otherwise pk(A)=rk +tk where C is chosen so that ip I =&

This step differs from the "optimal" step in that it uses at, not necessarily a

close estimate of the most negative eigenvalue, in identifying the hard case, and

that it just uses the direction of negative curvature q, in this case, not neces-

sarily an eigenvector corresponding to the most negative eigenvalue. This

makes it considerably more efficient to implement in the hard case. The second

order stationary point convergence follows obviously from Lemma 4.5.
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C6. A, I ilemonLaicn o. the IncdDfinite Dogleg Aigori;.Anm

In this section we will always use B =H(xt).

Now we present one possible implementation of the step selection strategy

in Algorithm 5.3 , both as an example of the sort of algorithm the theory has

been aimed at, and as partial justification that such algorithms can be efficiently

implemented.

Our implementation differs from More and Sorensen's [1961] in that it uses

explicit approximations to the most negative eigenvalue X, and corresponding

e;gcnvector vi. We claim that this approach may well be more efficient. The

bulk of the computational work in most optimization algorithms, aside from

function and derivative evaluations, is made up by matrix factorizations. In our

implEmentation there is the additional work involved in obtaining the approxi-

mations to the largest and smallest eigervalues and the most negative eigenvec-

tor. Computational experience shows that a good algorithm for this, e.g. the

Linczos method, can obtain approximations to outer eigenvalues and eigenvec-

tors of a symmetric matrix with guaranteed accuracy, with fewer operations

than one matrix factorization. According to Parlett [1980], the Lanczos algo-

rithm-n usually requires O(n"8) or fewer arithmetic operations. Thus, calculating

the desired eigen-information explicitly may not introduce a significant addi-

tional cost.

Figure 6.1 below contains a diagram of our proposed implementation of

Algorithm 5.3. This implementation includes estimation of the extreme eigen-

values and the corresponding eigenvectors of p. This would only be done at the

first minor iteration of each major (k-th) iteration. It additional minor iterations

were required, at this major iteration, the necessary eigen-information would

uready be known and so one would immediately calculate the step in part a) or

b) of Algorithm 5.3.
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In two places in Figure 6.1 there are "attempted Cholesky decompositions",

of Bt and Bt+aI. These algorithms are given in Gill, Murray, and Wright [1981]

or Dennis and Schnabel r 1983]. If the matrix is numerically positive definite, the

factorization algorithm calculates the LL r factorization of the matrix. If it is

not numerically positive definite, the factorization algorithm returns a lower

bound At on the most negative eigenvalue of the matrix and a direction of nega-

tive curvature v for the matrix (i.e. for Bt or F,+aI, respectively). The factori-
y3zation algorithm requires about -- multiplications and additions in all cases.

Since the Lanczos algorithm is restarted using this direction v, the A, that

results from the next use of the Lanczos algorithm at the same iteration must

be smaller than the curvature of v. Thus in particular, the X, resulting from the

Lanczos algorithm can be positive only if Bt-I was not positive definite and one

is going through the left-hand loop of Figure 6.1 for the first time in the k-th

iteration.

A possible choice of a in Figure 6.1 is

max (0X.)

where z1-V'mtachirne s. If Bt +aI is positive definite and step bii) is required, v

almost certainly will satisfy the conditions on qg in Lemma 4.5; this may be

tested using -a which is a lower bound on AI(Bt). It is theoretically possible

that additional iterations of the Lanczos procedure would be required to find a

saLisfactory u in this case.

Figure 6.2 shows how our implementation of Algorithm 5.3 given in Figure

6.1 can be modified to sometimes substitute the simpler step b) of Algorithm 5.4

for step b) of Algorithm 5.3, when B is not positive definite. A lower bound k on

NI(Bt) is always available, initially from the Gerschgorin theorem, and subse-

quently from the failed Cholesky decomposition. If the negative curvature direc-

tion v from the Lanczos algorithm satisfies the condition of Lemma 4.5 for qj,
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Fgure .1
An implcmentation of the step
selection strategy of Algorithm 5.3.

8),-, positive derimte? 1

Ino yes

i =negative eigenvalue
approximation from the

k-th iteration,
PromLanczosaloih

't desired accuracy,
starting with v, and

obtaini A and .

no (at each iteration
this can only occur

the first time through
this Loop(see

explanation in text)).

To combine Algorithm 5.4
with Algorithm 5.3, add
algorithm in Figure 8.2

herep
a:= a real number >-A

(see explanation in text.

Attempt Cholesky factorization Attempt Cholesky factorization

(see exlanation in text).- (see eplanation in text).

v := direction
of negative '8 +al

curvature from positive positive
attempted Cholesky

decomposition
(see explanation/n

In text). o yes no yes

Take step b) in Take step a) in
Algorith 6 .. .Alorihm
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uLirl.g r':.i, . Dou:u , in D..Ae X1,), uer, st.ep b) of A'orithm 5.4 may be

L,. C:i. i . . _ . :.. is a.±i :,=...e l-st v probably will

~ .ZffiyL i tn o;c.di.ioa c,, c i.4ir .,-). it sLep ) i Aio .m 5.'r is taken as soon

as At is possibie, tho stc=p selection strategy ol kiguces 6.1 and 6.2 may require

r.. matrix Lac LorizaLjons when Bk is not posiLive deftrnfe. Another alternative is

to t-ke this step only il some fixed number ol Cholesl-y decompositions havei ~ , say two.

T'- implem.ntati..ns in Figures 6.1 and 6.2 strive to winimize the number

o' matrix factoriza1ions. When B;, is positive definite, only one factorization will

be needed, in addition the Lanczos work will be required only if Bt-I was not

-- "....e definite. \Vhen 3,t is not positive definite, the algorithm will perform

Lut.., .zero ai~a a 'actorizations, usually between 0 and 2 or 3. When the step

L.- Lgiure 6.2 is taken on the ficsL iteration, no factorizations are needed. Gen-

c:-'y the Laicczos aigorith- vill yield a good enough approximation to j(BRk)

tl-cUe Lst a~ will yield a positive dcnite Bk +al, and thus only one factoriza-

v,:'l bc recuJred in the indefLnite case. In certain rather pathological cases,

th Lanczos algorithm can tend to converge not to the smallest eigenvalue but

Fi-ure 6.2

Optional augmentation with the step selection strategy of Algorithm 5.4.

Is t, a C'rection of 1. desired, take step b)
sufficient negative in A!go,.iahm 5.4.

curvature with respect -ye Otherwise. ,-ontinue witb
to the current lower algorit-n given in

bound on l(Bh)? Ptire 6."

no

Conj:e tWith
algorithm in
Figuta S.:
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ca , in which case the Cholesky factorization will fail. Then the algo-

i±i -m wiAi ue Lho direction of negative curvature fromi th-e Cholesky failure as a

s'.arting vactor for Lhz) Lanczos process, which guarantees that the Lanozos algo-

r-tbn-. will converge to a smaller eigenvalue than the last one. Thus, although we

i'ctoz-.y onz facto.-lzation to be required in the indcfinite case, it is possible

-cI.:rod may be needed, but never more than n.

In sunrnary, this implementation will require one factorization on all1 posi-tt-,- c 'i~ess-ian matrices, and most indefinLite ones. In addition, when Bk is
.:-: jZ ii de~z'Ate ", will require the work involved in the Lanczos process,

lkyto be considerably less than the work of one factorization when n

h >ge The implementation satisfies the requirements of Lo-mmas 4.3 and 4.5,

j - 'e!i he F. cor-.-uter code using this step in the framework of Algorithm 2.1 is

ccn rde-r stationary point convergent. Of course-, by Theorem 2.2 it is also

j u c,- c!-qadratically convergenit. The techniques in Flgy'r 6.1- could also be

cizn.)cvea ia the impl)ementation of other step selection s' raLegies, in particular

thie indefilite line search step given in Algorithm 5.1 or the modified "optimal"

S~pgiven '.n Al-orithm. 5.3, leading againi to implementations that are second

order stationary point convergent.
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